

温稠密金的太赫兹时域光谱实验

孙旭1,吴海忠1,王小伟1,吕治辉1,张栋文1*,刘东晓2,范伟2,粟敬钦2,周维民2,谷渝秋2,

赵增秀1**,袁建民1,3***

¹国防科技大学理学院,湖南 长沙 410073; ²中国工程物理研究院激光聚变研究中心,等离子体物理重点实验室,四川 绵阳 621900; ³中国工程物理研究院研究生院,北京 100193

摘要 太赫兹波为高能量密度物质提供了独一无二的诊断手段,但在大型高能量密度装置上实现极端条件下物质 状态的太赫兹时域光谱诊断技术仍面临巨大挑战。本文报道了在低重复频率、高能量激光装置上开展的光脉冲泵 浦-太赫兹探测实验。利用钛宝石飞秒激光器输出焦耳量级的单发脉冲,单发脉冲经磷酸二氢钾倍频后加热 30 nm 厚自支撑金膜,产生均匀的温稠密金等离子体;同时,将大孔径铌酸锂晶片通过光整流产生的单脉冲能量为7μJ的 太赫兹脉冲作为探测光,利用金属阶梯镜实现了单发太赫兹波形探测,获得了温稠密金在太赫兹波段的时间分辨的 电导率数据,为检验双温模型中电子-离子耦合系数等关键参数的准确性提供了新基准。

关键词 超快光学;太赫兹时域光谱;单发泵浦-探测;极端物态诊断;电导率

中图分类号 O441.4 文献标志码 A

DOI: 10.3788/CJL230791

1引言

太赫兹(THz,0.1~10 THz)在电磁波谱中介于微 波到远红外之间。太赫兹辐射独特的频谱范围使得太 赫兹时域光谱技术成为研究气体分子转动[1-2]、液体分 子动力学[34]、固体晶格振动[56]、等离子体振荡[7]等的 有力工具。光学泵浦-太赫兹探测作为太赫兹时域光 谱应用的重要组成部分,常被用来研究非平衡态的性 质,如半导体中的载流子动力学和迁移率^[8-9]。超强激 光能够产生高能量密度的极端非平衡物理状态,太赫 兹时域光谱技术能够诊断这种瞬态物质的电导率等参 数^[10]。温稠密物质的直流电导率是研究该物质结构、 辐射性质和动力学的重要参数,但是在大型高能量密 度装置上获取温稠密物质的时间分辨的电导率还面临 着巨大挑战。用太赫兹时域光谱技术诊断均匀温稠密 物质状态在实验上的挑战主要包含两个方面:一是缺 乏强场太赫兹源。温稠密物质是一种与固体具有相同 密度的等离子体,太赫兹电场在该物质中的透过率往 往在1%量级,只有强太赫兹场透过温稠密物质样品 后的太赫兹波形才有可能被探测到。二是缺乏单发太 赫兹波形探测手段。低重复频率、高脉冲能量的超快 激光产生温稠密物质的过程是破坏性的、不可重复的, 温稠密物质的信息包含在透射的一个太赫兹脉冲上,

因而必须发展单发太赫兹波形探测技术。

目前,强场太赫兹物理研究正处于快速发展期,人 们利用强场太赫兹源已经观察到了一大批新颖的实验 现象,如太赫兹拓扑开关^[11]、紧凑型太赫兹电子加速器 和压缩器^[12-15]、单发太赫兹生物成像^[16]、太赫兹引起的 晶体或液体中的非线性效应^[17-18]、太赫兹驱动的高次 谐波产生(HHG)^[19-20]以及对物质瞬态性质的太赫兹操 纵^[21-23]。我国在大型高能量密度装置上产生了脉冲能 量最高的太赫兹脉冲。2019年,中国科学院物理研究 所利用皮秒超强激光装置在固体薄膜靶中加速大量高 能电子,当电子从靶背面逃逸到真空时,通过渡越辐射 激发了脉冲能量高达55 mJ的高强度太赫兹辐射^[24]。

在利用飞秒激光脉冲产生单周期、宽频带、强场太赫兹辐射的方法中,光学整流(OR)是一种常用的方案。铌酸锂(LiNbO₃,简记为"LN")具有非线性系数大、损伤阈值高^[25]、带隙大(≈4 eV)的特点,采用钛宝石飞秒激光器泵浦时不会受到双光子吸收的影响,而且生长工艺较为成熟,高质量商业化铌酸锂晶片直径能达到152 mm^[26]。因此,铌酸锂是产生强太赫兹的一种重要材料。铌酸锂晶体中激光脉冲的群速度远大于太赫兹波的相速度,因此常采用倾斜波前技术来实现相位匹配^[2731]。最近,北京航空航天大学分别利用脉冲能量为214 mJ和1.2 J的钛宝石激光器泵浦低温冷

收稿日期: 2023-05-04; 修回日期: 2023-06-02; 录用日期: 2023-06-19; 网络首发日期: 2023-07-06

基金项目:国家重点研发计划(2019YFA0307703)、国家自然科学基金重点项目(12234020)、国家自然科学基金(12175211, 11974425, 11974426)

通信作者: 'dwzhang@nudt.edu.cn; "zhaozengxiu@nudt.edu.cn; ""jmyuan@gscaep.ac.cn

封底文章·特邀论文

却的铌酸锂棱镜,产生了1.4 mJ和13.9 mJ的太赫兹脉 冲^[32-33]。倾斜波前相位匹配要求铌酸锂棱镜的切割角 度在63°左右,导致太赫兹与泵浦光束非共线传播^[34]。 在低重复频率、高能量激光装置上开展光学泵浦-太赫 兹探测研究时,太赫兹与泵浦光束的非共线传播将会 为光路排布带来巨大的技术挑战。用大激光装置输出 的激光脉冲直接泵浦大口径铌酸锂晶片,然后通过光 整流获得与泵浦激光共线传播的强太赫兹脉冲也是一 种实际可行的方案^[26]。

传统的太赫兹波形探测技术利用多个太赫兹脉冲 重复扫描采样,如电光采样探测[35]、基于空气等离子体 电压偏置的相干探测[36-37]以及基于空气等离子光偏置 的宽带太赫兹平衡探测[38]等。近年来,基于电光采样 的太赫兹波形单发探测技术已见报道^[39]。光谱编码方 案用线性啁啾脉冲将太赫兹时间信息映射到不同的频 率上(以实现单发测量),时间分辨率受啁啾激光探测 脉冲频谱分辨率的限制[40-41];而通过引入一束未经展 宽的较短激光脉冲,在两脉冲之间引入一定的时间延 时,光谱仪就可探测到二者的干涉谱,时间分辨率由未 经展宽的激光脉冲宽度决定,克服了时间分辨率不高 的问题[42-44]。但是,光谱编码方案的整个时间窗口限 制在几皮秒内,这将导致探测到的太赫兹脉冲的光谱 分辨率不高。基于透射式双阶梯镜的空间编码方案将 探测光的时间信息编码到探测光强的空间分布上(以 实现单发测量)[45],容易受到阶梯镜材料均匀性和光学 啁啾等因素的影响。利用单个反射式金属阶梯镜将时 间信息映射到镜像上的空间位置,可以减小太赫兹波 形在时间上的失真[46-47]。

针对大型激光装置高能量、低重复频率泵浦的破 坏性、非平衡瞬态过程的测量,笔者采用单个反射式阶 梯镜与正交探测相结合的方案,设计并搭建了强场光 泵浦-太赫兹波形单发探测系统。该系统具备强激光 驱动下的太赫兹发射波形探测、强激光(400 nm 和 800 nm)泵浦-太赫兹波形单发探测能力。用直径为 3 inch(1 inch=2.54 cm)的铌酸锂晶片通过光整流产 生太赫兹脉冲,在1J激光脉冲能量驱动下产生的太赫 兹脉冲能量达到了7 µJ,太赫兹脉冲与泵浦光共线传 播,光路调节方便,能够探测到30nm厚自支撑金膜在 室温下的透射太赫兹光谱。共线光泵浦-太赫兹波形 单发探测系统分为太赫兹产生与强激光泵浦模块和太 赫兹波形单发探测模块,两者分别集成到两块面包板 上,前者放置于真空腔体内,后者放置于大气环境中, 移动便捷,安装简单,可适应不同的激光装置使用场 景。基于此系统,笔者验证了太赫兹波形单发探测能 力,并在0.8 MJ/kg的400 nm激光能量密度泵浦下, 获得了 30 nm 自支撑金膜在太赫兹波段的时间分辨的 电导率数据,为建立准确的温稠密物质的理论模型提 供了校验基准。

第 50 卷 第 17 期/2023 年 9 月/中国激光

2 光泵浦-太赫兹单发探测系统

2.1 系统搭建

实验是在中国工程物理研究院激光聚变研究中心 等离子体物理重点实验室的45 TW Ti: sapphire 飞秒 激光系统上完成的。激光系统的脉冲能量约为1J,中 心波长为800 nm,脉冲宽度为25 fs,光斑直径为 38 mm。搭建的光泵浦-太赫兹波形单发探测系统如 图1所示。图1(a)展示了整个系统的结构示意图, 800 nm 激光导入到光路中,首先经过磷酸二氢钾 (KDP,尺寸为55 mm×55 mm×3 m)晶体进行倍频, 然后通过镀膜双色镜(DM)实现基频光与倍频光的分 离。经双色镜透射的基频光经分束镜(BS)分束,其反 射的90%能量作为厚度为1mm、直径为3 inch的铌酸 锂晶片的驱动光,利用共线光整流效应产生强的太赫 兹脉冲。在铌酸锂晶片后放置塑料片和硅片,将透过 铌酸锂的激光挡掉。用金属镜(MM)调节太赫兹脉冲 的方向后利用离轴抛物面反射镜(OAP)进行聚焦。 随后进行太赫兹脉冲的收集与准直,将太赫兹引导进 入最后一个OAP进行聚焦,并利用氧化铟锡导电薄膜 (ITO)反射使太赫兹聚焦于电光探测晶体碲化锌 (ZnTe,厚度1.5 mm)表面。透射10%的飞秒激光能 量作为探测光经延迟线 TD1后,以14°入射角入射反 射式阶梯镜(RE),将时间信息编码到一维空间;出射 激光由焦距为175 mm的透镜聚焦,之后经由线偏振 片起偏后透过 ITO 与太赫兹在 ZnTe 晶体表面时空重 合;透过ZnTe的探测光再经过四分之一波片后经由 一个焦距为100 mm的透镜后成像到高速相机上。在 透镜与相机之间放置了一个线偏振片W2,其与偏振 片W1互相垂直,两个线偏振片和四分之一波片组成 了正交探测系统。两个线偏振片的消光比均达到了 10⁵,但ZnTe晶体和四分之一波片插入后,消光比会减 小到 300 左右,这是由应力引起的双折射和 ZnTe 晶体 的散射导致的。

倍频光作为泵浦激光被反射进入到延迟线 TD2, 经透镜聚焦后在焦前(直径约为2 mm,略大于太赫兹 焦斑直径,以保证均匀泵浦)打在靶上。在搭建过程 中,将太赫兹产生与泵浦光路集成到一个圆形面包板 上,将单发太赫兹探测光路集成到矩形面包板上,两者 可独立安装。若将系统中的倍频晶体取出,将双色镜 换成 800 nm 激光分束镜,该系统亦可利用 800 nm 泵 浦-太赫兹探测研究不同的物理过程。本次实验所用 皆为 400 nm 泵浦-太赫兹探测。

在光泵浦-太赫兹探测实验中使用的是厚度为30 nm、 直径为2 mm的自支撑金膜。图1(b)、(c)分别展示了 利用800 nm激光作为光源对金膜进行反射与透射成 像的结果,结果显示金膜表面质量较好。图1(d)详细 展示了光泵浦-太赫兹探测的空间分布,泵浦光斜入 射,太赫兹正入射。

- 图1 单发光泵浦-太赫兹探测系统示意图。(a)装置示意图(KDP:磷酸二氢钾;DM:双色镜;BS:激光分束镜;LN:铌酸锂晶片; OAP:离轴抛物面反射镜;MM:金属反射镜;TD1、TD2:太赫兹探测延迟线和激光泵浦延迟线;RE:反射式阶梯镜;W1、W2: 线栅;ITO:氧化铟锡薄膜;ZnTe:碲化锌晶体;QWP:四分之一波片);(b)(c)直径为2mm、厚度为30nm的自支撑金膜的反射 和透射成像结果;(d)光泵浦-太赫兹探测空间布局;(e)反射式阶梯镜表面结构示意图
- Fig. 1 Schematic diagrams of single-shot optical pump-terahertz detection system. (a) A schematic illustration of the setup (KDP: KH₂PO₄; DM: dichroic mirror; BS: beam splitter; LN: lithium niobate wafer; OAP: off-axis parabolic mirror; MM: metal mirror; TD1, TD2: terahertz detection delay line and pump delay line; RE: reflective echelon; W1, W2: wire grid polarizers; ITO: indium tin oxide thin film; ZnTe: zinc telluride detector crystal; QWP: 1/4 wave plate); (b)(c) reflection and transmission imaging results of free-standing gold foils with the diameter of 2 mm and the thickness of 30 nm, respectively; (d) spatial arrangement of optical pump and terahertz probe; (e) schematic diagram of the surface structure of the reflective echelon

2.2 太赫兹时域波形单发探测

在太赫兹单发探测中使用的是单个反射式阶梯反 射镜,将探测光的时间信息编码到空间中,如图1(e) 所示。设探测光入射方向与阶梯水平面法线的夹角为 θ ,阶梯宽度为D,阶梯高度为h, tan $\theta = h/D$,则相邻 阶梯之间的时间延迟为

$$\Delta t = \frac{2h}{c \cdot \cos \theta},\tag{1}$$

式中:c为真空中的光速。来自各个阶梯的镜面反射将 平面探测光斑分为N个(阶梯数)不同时间延迟的子光 斑,相邻子光斑之间的时间延迟为 Δt 。在实验中,反 射式阶梯镜由国内公司定制, $h=5 \mu m$, $D=20 \mu m$, 共 1010 个阶梯。由此计算可得时间分辨率 $\Delta t=$ 34.4 fs,探测时间窗口约为30 ps。

太赫兹时域波形的单发探测结果与传统多发扫描 结果对比如图2所示。图2(a)、(b)分别为CCD相机 记录的有太赫兹脉冲(THz on)、无太赫兹脉冲(THz off)时的探测光光强分布,图2(c)是太赫兹调制深度 γ。调制深度γ的计算公式为

$$\gamma = \frac{\Delta I}{I_0} = \frac{I_{\text{THz on}} - I_{\text{THz off}}}{I_{\text{THz off}}},$$
 (2)

式中:*I*_{THz,on}表示有太赫兹脉冲时相机测量的被调制的 探测光强度;*I*_{THz,off}表示无太赫兹脉冲时相机测量的无 调制的探测光背景强度信号。图 2(c)横轴上的像素 点代表时间信息,每一行像素点都表示一个太赫兹波 形。为了避免光斑不均匀带来的影响,将图 2(c)中的 列像素光强值相加,得到图 2(d)所示的单发探测太赫 兹波形(实线)。其中,时间轴的标定是通过改变太赫 兹-探测光之间的延迟线[图1(a)中TD1],记录太赫 兹电场峰值的移动得到的。相邻像素点之间的时间延 迟为 29.5 fs,在实验中使用此时间标度。图 2(d)中的 点划线表示传统多发扫描方式测得的太赫兹波形。将 两者进行归一化后再进行比较,可以发现在太赫兹主 脉冲部分,单发波形和扫描波形高度重合,而在主峰之 后的由空气中的水蒸气导致的振荡峰处,单发探测的 太赫兹电场强度高于传统扫描得到的波形。

3 强太赫兹共线产生与表征

当铌酸锂晶片光轴与泵浦光偏振平行时,利用 Golay cell测量太赫兹能量,得到了5组不同激光能量 下泵浦铌酸锂晶片产生的太赫兹辐射能量与激光装置 光栅对位置的依赖关系,如图3(a)右轴所示,单个太

图 2 单发探测与传统多发扫描探测的太赫兹波形对比。(a)有太赫兹的单发信号;(b)无太赫兹的单发背景信号;(c)单发太赫兹调制信号,ΔI/I₀=(I_{THzon}-I_{THzoff})/I_{THzoff};(d)由(c)纵向积分得到的单发波形(ΔI/I₀)和传统多发扫描波形的对比,其中的实线表示单发探测结果,点划线表示传统的多点扫描结果

Fig. 2 Comparison of terahertz waveform between single-shot detection and traditional multi-shot scanning detection. (a) Single-shot signal with THz on; (b) single-shot background signal with THz off; (c) single-shot terahertz modulation signal, $\Delta I/I_0 = (I_{\text{THz on}} - I_{\text{THz off}})/I_{\text{THz off}}$; (d) comparison between the single-shot waveform (solid line, $\Delta I/I_0$) obtained by vertical integration of Fig. 2 (c) and the multi-shot waveform obtained by traditional multi-shot scanning (dot dash line)

赫兹脉冲能量最大达到7μJ。图3(a)左轴表示不同光 栅位置对应的激光脉宽,位置的正负表示啁啾的相对 正负。可以发现:随着泵浦能量的增加,太赫兹发射对 应的最优脉宽相应增大,且啁啾正负对太赫兹脉冲能 量的影响并不十分明显。

同时,测量了最大泵浦脉冲能量(1 J)、最优脉宽 (τ =126 fs)下产生的太赫兹脉冲能量通量随泵浦光 强的变化,如图 3(b)左轴所示。经过拟合发现,太赫 兹能量通量与光强呈平方关系。计算了太赫兹能量转 换效率,如图 3(b)右轴所示。经过拟合后发现转换效 率随光强增大呈线性增大的趋势,最大转换效率约为 7×10⁻⁶。这些结果说明在 0.8 TW/cm²光强以下,太 赫兹的产生机制仍以光整流为主导。

4 温稠密金太赫兹波段电导率测量

当400 nm 泵浦能量密度约为0.8 MJ/kg时,测得 了不同泵浦延时下30 nm 厚自支撑金膜的透射太赫 兹波形,同时测量了相对应的金膜蒸发后透过小孔 [图1(b)、(c)中支撑金膜的2 mm的小孔]的太赫兹波 形。图4展示了泵浦探测延时为3 ps时透过金膜与小 孔的太赫兹波形数据。其中,泵浦探测延时零点的标 定是用硅片完成的。将0.5 mm厚的硅片放置在金膜 位置,用400 nm激光泵浦产生载流子,观察到太赫兹 波透过率迅速下降,将此时的泵浦探测延时标定为零 延时,泵浦光与太赫兹脉冲在靶处时空重合。负延时 表示太赫兹脉冲先于泵浦光到达金膜。

图 4(a)、(b)分别是 CCD 相机记录下的透过金膜 和小孔的太赫兹调制光强。利用有太赫兹和无太赫兹 信号(截掉 CCD 相机记录的坏点部分)差分得到太赫 兹调制信号,Δ*I* = *I*_{THzof}, 对其分段纵向积分, 每 100 行积分后平均,得到Δ*I*/*I*₀的太赫兹时域波形 [如图 4(c)、(d)所示],对其进行傅里叶变换后得到相 应的频谱信息,如图 4(e)、(f)所示。为了避免信号过 饱和,透过小孔的太赫兹调制信号是用太赫兹线栅衰 减后(衰减为原来的 1/10)测得的,因此在处理时域波 形[如图 4(d)所示]时要乘以10。从频谱数据来看,由 于太赫兹波形单发探测系统放置于大气环境中,存在 水蒸气的吸收峰,会干扰频域透过率的数据分析。

为了减小探测过程中由激光器脉冲能量抖动导致的基线偏移对数据的影响,利用太赫兹时域波形的峰峰值来计算金膜的透过率。图5中的红色圆圈数据点(对应右轴)展示了太赫兹透过率随泵浦光延时的变化。

由于太赫兹波长远大于金膜厚度(*λ*≫*d*=30 nm), 因此可以通过式(3)将金膜太赫兹透过率与电导率实

图4 泵浦延时为3ps时金膜和小孔的太赫兹透射信号。(a)(b)金膜和小孔在有无太赫兹时探测光强的改变 $\Delta I = I_{THzon} - I_{THzoff}$; (c)(d)由 $\Delta I/I_0$ 得到的金膜和小孔的太赫兹时域波形;(e)(f)是对应于(c)(d)的频谱

Fig. 4 Transmitted terahertz signal of the free-standing gold foil and the hole at the pump delay of 3 ps. (a)(b) Changes in probe optical intensity ($\Delta I = I_{\text{THz on}} - I_{\text{THz off}}$) with and without THz radiation for the gold foil and the hole, respectively; (c)(d) THz time-domain waveforms obtained from $\Delta I/I_0$ for the gold foil and the hole, respectively; (e)(f) the corresponding frequency spectra of Figs. 4(c) and (d)

封底文章·特邀论文

部联系起来^[48]。

$$|T_{\rm r}| = \frac{|E_{\rm Au}|}{|E_{\rm Hole}|} = \left|\frac{2}{\sigma Z_0 d + 2}\right| \approx \frac{2}{|\sigma|Z_0 d + 2}, \quad (3)$$

式中: σ 表示电导率实部; E_{Au} 和 E_{Hole} 分别表示透过金 膜和相应小孔的太赫兹电场峰峰值; Z_0 表示自由空间 阻抗, $Z_0 = 337 \Omega_o$ 由式(3)计算出的电导率实部随泵 浦延时的变化如图5中黑色球形数据所示(对应左 轴)。室温下30nm厚自支撑金膜的电导率 $\sigma_0 = (3.4 \sim 3.7) \times 10^7 \text{ S/m}$,与块体纯金的直流电导率数据(如图5 中的五角星所示)接近^[49], $\sigma_{dc bulk} = 4.403 \times 10^7 \text{ S/m}$ 。

在400 nm激光泵浦下,电导率在泵浦延时3 ps内急剧下降到0.61×10⁷ S/m,之后开始缓慢减小,最终在46.7 ps时下降到0.14×10⁷ S/m。对从0 ps开始的电导率变化使用式(4)所示的双指数衰减函数进行拟合^[50]。

$$\sigma_0 = A \left[B \exp\left(-\frac{t}{\tau_1}\right) + (1-B) \exp\left(-\frac{t}{\tau_2}\right) \right] + C, (4)$$

式中:t是泵浦探测延时; τ_1 和 τ_2 分别表示快慢弛豫时间;A和B分别表示幅度和快弛豫过程占整个过程的比例;C表示时间无关的偏移。经过拟合可得:A= 0.72, τ_1 =1.70 ps, τ_2 =167.42 ps。拟合结果如图 5中的实线所示(对应左轴),将其与实验数据进行比较可以发现两者吻合得较好。这一拟合结果表明,在金膜加

图 5 自支撑金膜电导率 σ₀和太赫兹透过率随泵浦延时的变化 (负延时表示太赫兹先于泵浦光到达金膜),其中实线为 双指数拟合得到的电导率随泵浦延时的变化,五角星数 据点表示室温下(300 K)块体纯金的直流电导率^[49],σ_{dcbulk}= 4.403×10⁷ S/m

Fig. 5 Variations in the electrical conductivity σ_0 and THz transmittance of the free-standing gold foil as a function of pump-probe delay (negative delay indicates that the terahertz wave arrives at the free-standing gold foil before the pump laser), where the solid line represents the time-resolved electrical conductivity at different pump-probe delay obtained from a double exponential function fit and the DC electrical conductivity of bulk pure gold at room temperature (300 K) is shown with five-pointed star symbols^[49], σ_{dcbulk} =4.403×10⁷ S/m

第 50 卷 第 17 期/2023 年 9 月/中国激光

热过程中,电导率的变化可能是由一个弛豫时间约为 1.7 ps的快过程和一个较慢过程贡献的。由于金膜5d 电子吸收400 nm(3.1 eV)泵浦光子,电子温度在亚皮 秒时间内从室温上升到10000 K以上,导致太赫兹透 过率在最初的3 ps内急剧上升(电导率急剧下降)。紧 接着,高温的电子系统向低温的离子系统传输能量,随 着离子温度升高,太赫兹透过率缓慢上升(电导率缓慢 下降)。借助双温模型,利用太赫兹透过率的跃变幅 度,可以诊断激光脉冲结束后电子的温度;利用太赫兹 透过率的缓慢上升,可以诊断温稠密物质电子-离子的 耦合系数。

5 结 论

太赫兹波为高能量密度物理提供了一个独特的探针。基于大型高能量密度装置产生的强场太赫兹脉冲 以及太赫兹波形单发探测技术,太赫兹时域光谱技术 能够诊断温稠密物质的结构和输运特性。笔者设计搭 建了强激光泵浦-单发太赫兹时域光谱探测系统,并利 用该系统在45 TW 激光装置上测量了温稠密金在太 赫兹波段的时间分辨的电导率,为极端非平衡物态提 供了新的诊断工具。

参考文献

- Lu J, Zhang Y Q, Hwang H Y, et al. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase
 [J]. Proceedings of the National Academy of Sciences, 2016, 113: 11800.
- [2] Zhang Y Q, Shi J J, Li X, et al. Nonlinear rotational spectroscopy reveals many-body interactions in water molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(40): 2020941118.
- [3] Hamm P, Savolainen J, Ono J, et al. Note: inverted time-ordering in two-dimensional-Raman-terahertz spectroscopy of water[J]. The Journal of Chemical Physics, 2012, 136(23): 236101.
- [4] Finneran I A, Welsch R, Allodi M A, et al. Coherent twodimensional terahertz-terahertz-Raman spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(25): 6857-6861.
- [5] Johnson C L, Knighton B E, Johnson J A. Distinguishing nonlinear terahertz excitation pathways with two-dimensional spectroscopy[J]. Physical Review Letters, 2019, 122(7): 073901.
- [6] Houver S, Huber L, Savoini M, et al. 2D THz spectroscopic investigation of ballistic conduction-band electron dynamics in InSb [J]. Optics Express, 2019, 27(8): 10854-10865.
- [7] Huang Y D, Xiang Z X, Xu X, et al. Localized-plasma-assisted rotational transitions in the terahertz region[J]. Physical Review A, 2021, 103(3): 033109.
- [8] Ulbricht R, Hendry E, Shan J E, et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy [J]. Reviews of Modern Physics, 2011, 83(2): 543-586.
- [9] Wu H Z, Guo Q A, Tu Y Y, et al. Polarity reversal of terahertz electric field from heavily p-doped silicon surfaces[J]. Chinese Physics Letters, 2021, 38(7): 074201.
- [10] Chen Z, Curry C B, Zhang R, et al. Ultrafast multi-cycle terahertz measurements of the electrical conductivity in strongly excited solids[J]. Nature Communications, 2021, 12: 1638.
- [11] Sie E J, Nyby C M, Pemmaraju C D, et al. An ultrafast symmetry switch in a Weyl semimetal[J]. Nature, 2019, 565(7737): 61-66.

封底文章・特邀论文

- [12] Nanni E A, Huang W R, Hong K H, et al. Terahertz-driven linear electron acceleration[J]. Nature Communications, 2015, 6: 8486.
- [13] Kealhofer C, Schneider W, Ehberger D, et al. All-optical control and metrology of electron pulses[J]. Science, 2016, 352(6284): 429-433.
- [14] Zhang D F, Fallahi A, Hemmer M, et al. Segmented terahertz electron accelerator and manipulator (STEAM) [J]. Nature Photonics, 2018, 12(6): 336-342.
- [15] Zhang D F, Fallahi A, Hemmer M, et al. Femtosecond phase control in high-field terahertz-driven ultrafast electron sources[J]. Optica, 2019, 6(7): 872-877.
- [16] Mittleman D M. Twenty years of terahertz imaging[J]. Optics Express, 2018, 26(8): 9417-9431.
- [17] Chai X, Ropagnol X, Raeis-Zadeh S M, et al. Subcycle terahertz nonlinear optics[J]. Physical Review Letters, 2018, 121(14): 143901.
- [18] Zalden P, Song L W, Wu X J, et al. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation[J]. Nature Communications, 2018, 9: 2142.
- [19] Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 2014, 8(2): 119-123.
- [20] Hafez H A, Kovalev S, Deinert J C, et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions[J]. Nature, 2018, 561(7724): 507-511.
- [21] Langer F, Hohenleutner M, Schmid C P, et al. Lightwave-driven quasiparticle collisions on a subcycle timescale[J]. Nature, 2016, 533(7602): 225-229.
- [22] Jelic V, Iwaszczuk K, Nguyen P H, et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface[J]. Nature Physics, 2017, 13(6): 591-598.
- [23] Schlauderer S, Lange C, Baierl S, et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching[J]. Nature, 2019, 569(7756): 383-387.
- [24] Liao G Q, Li Y T, Liu H, et al. Multi millijoule coherent terahertz bursts from picosecond laser-irradiated metal foils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 3994-3999.
- [25] Hebling J, Stepanov A G, Almási G, et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts[J]. Applied Physics B, 2004, 78(5): 593-599.
- [26] Jang D, Kang C, Lee S K, et al. Scalable terahertz generation by large-area optical rectification at 80 TW laser power[J]. Optics Letters, 2019, 44(22): 5634-5637.
- [27] Stepanov A G, Henin S, Petit Y, et al. Mobile source of highenergy single-cycle terahertz pulses[J]. Applied Physics B, 2010, 101(1): 11-14.
- [28] Hirori H, Doi A, Blanchard F, et al. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO₃[J]. Applied Physics Letters, 2011, 98(9): 091106.
- [29] Wu X J, Carbajo S, Ravi K, et al. Terahertz generation in lithium niobate driven by Ti: sapphire laser pulses and its limitations[J]. Optics Letters, 2014, 39(18): 5403-5406.
- [30] Zhong S C, Li J, Zhai Z H, et al. Generation of 0.19-mJ THz pulses in LiNbO₃ driven by 800-nm femtosecond laser[J]. Optics Express, 2016, 24(13): 14828-14835.
- [31] Wu X J, Ma J L, Zhang B L, et al. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti: sapphire laser pulses[J]. Optics Express, 2018, 26(6): 7107-7116.

- [32] Zhang B L, Ma Z Z, Ma J L, et al. 1.4-mJ high energy terahertz radiation from lithium niobates[J]. Laser & Photonics Reviews, 2021, 15(3): 2000295.
- [33] Wu X J, Kong D Y, Hao S B, et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials[J]. Advanced Materials, 2023, 35(23): 2208947.
- [34] Auston D H, Cheung K P, Valdmanis J A, et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media[J]. Physical Review Letters, 1984, 53(16): 1555-1558.
- [35] Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams[J]. Applied Physics Letters, 1995, 67(24): 3523-3525.
- [36] Karpowicz N, Dai J M, Lu X F, et al. Coherent heterodyne timedomain spectrometry covering the entire "terahertz gap" [J]. Applied Physics Letters, 2008, 92(1): 011131.
- [37] Dai J M, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases[J]. Physical Review Letters, 2006, 97(10): 103903.
- [38] Sun X, Lü Z H, Wu H Z, et al. Broadband terahertz detection by laser plasma with balanced optical bias[J]. Sensors, 2022, 22(19): 7569.
- [39] Teo S M, Ofori-Okai B K, Werley C A, et al. Invited article: single-shot THz detection techniques optimized for multidimensional THz spectroscopy[J]. Review of Scientific Instruments, 2015, 86(5): 051301.
- [40] Jiang Z P, Zhang X C. Electro-optic measurement of THz field pulses with a chirped optical beam[J]. Applied Physics Letters, 1998, 72(16): 1945-1947.
- [41] Kim K Y, Yellampalle B, Glownia J H, et al. Measurements of terahertz electrical conductivity of intense laser-heated dense aluminum plasmas[J]. Physical Review Letters, 2008, 100(13): 135002.
- [42] van Tilborg J, Tóth C, Matlis N H, et al. Single-shot measurement of the spectral envelope of broad-bandwidth terahertz pulses from femtosecond electron bunches[J]. Optics Letters, 2008, 33(11): 1186-1188.
- [43] Matlis N H, Plateau G R, van Tilborg J, et al. Single-shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation[J]. Journal of the Optical Society of America B, 2010, 28(1): 23-27.
- [44] Li Y, Li C, Zhou M, et al. Strong terahertz radiation from relativistic laser interaction with solid density plasmas[J]. Applied Physics Letters, 2012, 100(25): 254101.
- [45] Kim K Y, Yellampalle B, Taylor A J, et al. Single-shot terahertz pulse characterization via two-dimensional electro-optic imaging with dual echelons[J]. Optics Letters, 2007, 32(14): 1968-1970.
- [46] Minami Y, Hayashi Y, Takeda J, et al. Single-shot measurement of a terahertz electric-field waveform using a reflective echelon mirror[J]. Applied Physics Letters, 2013, 103(5): 051103.
- [47] Katayama I, Sakaibara H, Takeda J. Real-time time frequency imaging of ultrashort laser pulses using an echelon mirror[J]. Japanese Journal of Applied Physics, 2011, 50(10R): 102701.
- [48] Lloyd-Hughes J, Jeon T I. A review of the terahertz conductivity of bulk and nano-materials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(9): 871-925.
- [49] Haynes W. CRC handbook of chemistry and physics[M]. New York: CRC Press, 2014.
- [50] 才家华,张保龙,耿春艳,等. 铌酸锂强场太赫兹非线性光谱系统[J]. 中国激光, 2023, 50(17): 1714001.
 Cai J H, Zhang B L, Geng C Y, et al. Lithium niobate strong field terahertz nonlinear spectroscopy[J]. Chinese Journal of Lasers, 2023, 50(17): 1714001.

第 50 卷 第 17 期/2023 年 9 月/中国激光

Terahertz Time-Domain Spectroscopy of Warm Dense Gold

Sun Xu¹, Wu Haizhong¹, Wang Xiaowei¹, Lü Zhihui¹, Zhang Dongwen^{1*}, Liu Dongxiao², Fan Wei², Su Jingqin², Zhou Weimin², Gu Yuqiu², Zhao Zengxiu^{1**}, Yuan Jianmin^{1,3***}
 ¹College of Science, National University of Defense Technology, Changsha 410073, Hunan, China;
 ²Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, CAEP, Mianyang 621900,

Sichuan, China;

³Graduate School of China Academy of Engineering Physics, Beijing 100193, China

Abstract

Objective Terahertz (THz) waves offer a distinctive diagnostic method for detecting high energy density matter. However, realizing the THz time-domain spectral (THz-TDS) diagnosis of matter states under extreme conditions in large high-energy density devices remains a significant obstacle. To address this requirement, we designed and implemented an optical pump-THz single-shot detection system driven by a strong femtosecond laser. The system possesses the capability of THz single-shot detection under extreme conditions and diagnosis of irreversible processes with extreme transience using THz-TDS diagnosis under intense laser pumping.

Methods We developed an integrated optically pumped terahertz (THz) single-shot detection system that utilizes a 45 TW Ti: sapphire femtosecond laser with a pulse width of 30 fs, central wavelength of 800 nm, and spot diameter of approximately 38 mm. The laser pulses were initially directed to realize second harmonic generation (SHG) via KDP crystals and then separated into fundamental and SHG using a dichroic mirror (DM). The SHG was reflected into the pump time-delay line (TD2) and focused by a lens to ensure complete pumping of the target object with a focus size of approximately 2 mm in diameter consistent with the THz focus size. Meanwhile, the fundamental frequency laser transmitted by the DM was divided by the beam splitting mirror (BS) with 90% of the energy used as the driving laser of the lithium niobate wafer. An intense THz pulse was generated by collinear optical rectification effect, and an off-axis parabolic mirror (OAP) was utilized to focus it onto the target object. The THz pulses transmitted through the target object were focused by the OAP and reflected by indium tin oxide (ITO) to reach the surface of the ZnTe crystal. Moreover, 10% of the transmitted energy of the THz probe laser was directed into the time-delay line (TD1) incident with the surface normal of the reflective echelon at 14° and encoded time information into a one-dimensional space. The outgoing laser was spatiotemporal coincident with the THz on the surface of the ZnTe crystal. Finally, the orthogonal detection scheme was utilized to probe the THz waveform.

Results and Discussions We present the design and implementation of an intense-field optical pump-THz time-domain spectroscopy single-shot detection system for measuring the irreversible non-equilibrium transient processes in high-energy and low-repetition-rate pumps of large laser devices. The system employs a reflective echelon and orthogonal detection scheme to detect pulses generated through the collinear optical rectification of a lithium niobate wafer with a diameter of 3 inch. The system consists of a THz generation-intense laser pumping module and a THz time-domain spectral single-shot detection module integrated into separate optical breadboards. The former can be placed in a vacuum chamber, and the latter in an atmospheric environment, making it easy to move and install and suitable for different laser-device application scenarios. The THz pulses have an energy of 7 µJ at 800 nm 1 J laser energy, can be easily adjusted, and have a detection capability of a 30 nm free-standing gold foils transmission spectrum at room temperature. We verify that the waveform obtained by the single-shot detection is the same as that obtained by traditional scanning. Based on this device, the variation of conductivity in the THz band of 30 nm free-standing gold foils with pumping delay measured under the 0.8 MJ/kg laser energy density of a 400 nm pump contributes to the further understanding of the generation and evolution of the warm dense state of gold.

Conclusions With the advent of intense femtosecond lasers, it has become possible to investigate the state of matter in extreme conditions. The maturation of THz time-domain spectroscopy technology also provides a new tool for diagnosing extreme non-equilibrium states. To meet the demands of THz emission and state diagnosis under such extreme conditions, an intense-field optical pump-THz time-domain spectroscopy single-shot detection system with a simple THz path was designed and fabricated. The system was employed to measure the transient THz conductivity of 30 nm thick free-standing gold foils pumped by a 400 nm laser pulse. The obtained results serve as a potent platform for further exploration of irreversible processes including extreme condition THz emission-detection and the diagnosis of non-equilibrium states of matter under extreme conditions.

Key words ultrafast optics; terahertz time-domain spectroscopy; single-shot pump-probe; matter state diagnosis under extreme conditions; conductivity